Mangrove carbon sequestration in the Florida Everglades Mangrove forests represent one of the most geochemically and biologically active biomes (Twilley et al. 1992), yet at present no unified modeling framework exists to investigate processes governing carbon sequestration. Limited information is available to learn how mangrove forests respond to climate forcings and anthropogenic perturbations such as fresh water input dynamics. This research addresses the hypothesis that the carbon sequestration capability of the riverine mangrove ecosystem in south Florida is governed by rates of fresh water flows into the bay and abiotic forcings such as environmental irradiance, and temporal and spatial salinity gradients. The hypothesis is first evaluated through the application of coupled atmospheric-biospheric modeling systems. We are developing a coupled atmospheric-biospheric modeling system to investigate trace gas exchange between the mangrove forest and overlying atmosphere. The model consists of a plant canopy radiative transfer module to describe solar and terrestrial irradiance disposition inside the forest, a module to quantify turbulent transport through the canopy, a plant biochemistry module to estimate carbon assimilation rates, and a component to evaluate soil respiration rates. The plant biochemistry module is based on the theory developed for terrestrial ecosystems (Baldocchi and Meyers 1998, Gu et al. 1999), but it incorporates physiological characteristics determined by our research group for riverine mangroves in Shark River Slough adjacent to Long-Term Ecological Research (FCE-LTER) site SRS-6. As input to the biochemical module, local physiological characteristics are considered including Rubisco, light limited carboxylation rates, nighttime respiration rates, and stomatal conductance to water vapor diffusion for red (Rhizophora mangle), white (Languncularia racemosa), and black (Avicennia germinans) mangroves. To reflect the vertical gradients in both mangrove physiology and environmental state variables, the model represents the mangrove forest canopy as a conglomerate of layers. The net carbon exchange between the forest and overlying atmosphere is taken as the integral of the differences between photosynthetic gains and the respiratory losses.
|
---|